3.2 Properties of Determinants

Theorem 3. Row Operations
Let A be a square matrix.

1. If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det} B=\operatorname{det} A$.
2. If two rows of A are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
3. If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \operatorname{det} A$.

Example 1. Each equation illustrates a property of determinants. State the property.

1. $\left|\right.$| 3 | -6 | |
| ---: | ---: | ---: |
| 3 | 5 | -5 |
| 1 | 3 | 3 |\(|=3\left|\begin{array}{rrr}1 \& -2 \& \downarrow \\

3 \& 5 \& -5 \\
1 \& 3 \& 3\end{array}\right|\)

Thy 3 (3).

Question: If A is 3×3, what is $\operatorname{det}(4 A)$ in terms
$3 \times R 1$ of B produces $A, \operatorname{det} A=3 \operatorname{det} B$. of $\operatorname{det} A ? 4^{3} \operatorname{det} A$
2. $\left|\begin{array}{rrr}1 & 2 & 2 \\ 0 & 3 & -4 \\ 2 & 7 \uparrow & 4\end{array}\right|=\left|\begin{array}{rrr}1 & 2 & 2 \\ 0 & 3 & -4 \\ 0 & 3 & \text { h }\end{array}\right| \quad A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \rightarrow\left[\begin{array}{ccc}4 a & 4 b & 4 \\ d & e & f \\ g & h & i\end{array}\right]$
$\begin{aligned} & 2 \times R 1+R 3 \text { of } B \text { produces } A .(T) \operatorname{m~3(1))} \\ & \begin{array}{l}\text { So } \operatorname{det} A=\operatorname{det}(B) \\ \text { Example 2. Let }\end{array}\end{aligned} \rightarrow\left[\begin{array}{lll}4 a & 4 b & 4 c \\ 4 d & 4 e & 4-1 \\ g & h & i\end{array}\right] \rightarrow\left[\begin{array}{lll}4 a & 4 b & 4 c \\ 4 d & 4 e & 4 f \\ 4 g & 4 h & 4 i\end{array}\right]=4 A$

$$
\left|\begin{array}{lll}
a & b^{\prime} & c \\
d & e & f \\
g & h & i
\end{array}\right|=5
$$

find the determinate of $\left|\begin{array}{ccc}a & b & c \\ g & h & i \\ 3 d+a & 3 e+b & 3 f+c\end{array}\right|=-15$
ANS
(1) $R_{2} \longleftrightarrow R_{3}$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| \xrightarrow{(3) R 3 \longrightarrow 3 R 3}\left|\begin{array}{ccc}
a & b & c \\
g & h & i \\
3 d+a & 3 e+b & 3 f+c
\end{array}\right| . \\
& \operatorname{det}(A)=5 \xrightarrow{\text { step } Q}-5 \xrightarrow{\operatorname{step}(2)} 3 \times(-5)=-15 \xrightarrow{\text { step } 3)}-15
\end{aligned}
$$

Remark. Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges. If there are r interchanges, then

$$
\operatorname{det} A=(-1)^{r} \operatorname{det} U
$$

Notice that $\operatorname{det} U=u_{11} \cdot u_{22} \cdots u_{n n}$, which is the product of the diagonal entries of U. If A is invertible, the entries $u_{i i}$ are all pivots. Otherwise, at least $u_{n n}$ is zero. Thus

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot\binom{\text { product of }}{\text { pivots in } U} & \text { when } A \text { is invertible } \\ 0 & \text { when } A \text { is not invertible }\end{cases}
$$

Theorem 4. A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Example 3. Use determinants to decide if the set of vectors is linearly independent.

$$
\left[\begin{array}{r}
7 \\
-4 \\
-6
\end{array}\right],\left[\begin{array}{r}
-8 \\
5 \\
7
\end{array}\right],\left[\begin{array}{r}
7 \\
0 \\
-5
\end{array}\right]
$$

ANS:

$$
A=\left[\begin{array}{ccc}
7 & -8 & 7 \\
-4 & 5 & 0 \\
-6 & 7 & -5
\end{array}\right]
$$

We know A is invertible $\Leftrightarrow \operatorname{det} A \neq 0$?
\Leftrightarrow The columns of A form a linearly independent set. (The invertible Matrix Theorem)

We compute

$$
\begin{aligned}
\operatorname{det} A= & 7 \cdot(-1)^{1+3} \cdot\left|\begin{array}{cc}
-4 & 5 \\
-6 & 7
\end{array}\right|-5 \cdot(-1)^{3+3} \cdot\left|\begin{array}{cc}
7 & -8 \\
-4 & 5
\end{array}\right| \\
& \quad \text { (expansion across the 3ral column) } \\
= & 7 \cdot(-28+30)-5 \cdot(35-32) \\
= & 14-15=-1 \neq 0
\end{aligned}
$$

Thus $\operatorname{det} A \neq 0$. So the given vectors are linearly indepen dent

Column Operations
Theorem 5. If A is an $n \times n$ matrix, then $\operatorname{det} A^{T}=\operatorname{det} A$.
Determinants and Matrix Products
Theorem 6 Multiplicative Property
If A and B are $n \times n$ matrices, then $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.

Example 4. Compute $\operatorname{det} A^{4}$, where $A=\left[\begin{array}{lll}2 & 0 & 2 \\ 2 & 2 & 4 \\ 1 & 2 & 1\end{array}\right]$.
Ans: $\operatorname{det} A^{4}=\operatorname{det}(A \cdot A \cdot A \cdot A) \xlongequal{\text { That }}(\operatorname{det} A)^{4}$

$$
\begin{aligned}
\operatorname{det} A & =2 \cdot\left|\begin{array}{ll}
2 & 4 \\
2 & 1
\end{array}\right|+2\left|\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right| \\
& =2 \cdot(2-8)+2 \cdot(4-2) \\
& =-12+4 \\
& =-8
\end{aligned}
$$

Thus $\operatorname{det} A^{4}=(\operatorname{det} A)^{4}=4096$
Exercise 5. Use determinants to find out if the matrix is invertible.

$$
A=\left[\begin{array}{lll}
2 & 6 & 0 \\
1 & 3 & 2 \\
3 & 9 & 2
\end{array}\right]
$$

ANS:

$$
\begin{aligned}
\operatorname{det}(A) & =2 \cdot\left|\begin{array}{ll}
3 & 2 \\
9 & 2
\end{array}\right|-6\left|\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right| \\
& =2 \cdot(6-18)-6(2-6) \\
& =2 \cdot(-12)-6(-4) \\
& =-24+24=0 \text {. So } \operatorname{det}(A)=0 .
\end{aligned}
$$

By The 4, A is not invertible.

